mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3A p3
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
0450974138
commit
0142424012
1
math.typ
1
math.typ
@ -2,6 +2,7 @@
|
||||
#let ii = "i"
|
||||
#let span = $op("span")$
|
||||
#let Poly = math.cal("P")
|
||||
#let LinearMap = math.cal("L")
|
||||
#let complexification(vv) = $vv_upright(C)$
|
||||
#let rhs = "R.H.S."
|
||||
#let lhs = "L.H.S."
|
||||
|
@ -1,5 +1,5 @@
|
||||
#import "../styles.typ": exercise_sol, note, tab
|
||||
#import "../math.typ": Poly
|
||||
#import "../math.typ": Poly, LinearMap
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $b, c in RR$。定义
|
||||
@ -71,3 +71,28 @@
|
||||
|
||||
#tab 解得 $b = c = 0$。这就是说 $T$ 是线性映射,当且仅当 $b = c = 0$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $T in LinearMap(FF^n, FF^m)$。证明:对于 $j in {1, dots, m}$ 和 $k in {1, dots, n}$,存在标量 $A_(j, k) in FF$,使得对于任意 $(x_1, dots, x_n) in FF^n$,
|
||||
|
||||
$ T(x_1, dots, x_n) = (A_(1, 1)x_1 + dots.c + A_(1, n) x_n, dots, A_(m, 1) x_1 + dots.c + A_(m, n) x_n) $
|
||||
|
||||
#note[此习题表明,线性映射 $T$ 具有在原书例3.3的倒数第二个例子中预示的形式。]
|
||||
][
|
||||
对于 $j in {1, dots, m}$ 和 $k in {1, dots, n}$,令 $w_j in FF^m$ 和 $v_k in FF^n$ 分别为第 $j$ 个和第 $k$ 个分量为 $1$,其余分量为 $0$ 的向量。
|
||||
|
||||
#tab 容易发现,$w_1, dots, w_m$ 是 $FF^m$ 的基,$v_1, dots, v_n$ 是 $FF^n$ 的基。于是,对于任意 $k in {1, dots, n}$,可以找到 $A_(1, 1), dots, A_(m, 1) in FF$,使得
|
||||
|
||||
$ T v_k = A_(1, k) w_1 + dots.c + A_(m, k) w_m $
|
||||
|
||||
#tab 另一方面,根据 $v_k$ 的定义,我们知道 $(x_1, dots, x_n) = x_1 v_1 + dots.c + x_n v_n$。同时,考虑到 $T$ 是线性映射,我们有
|
||||
|
||||
$ T(x_1, dots, x_n) &= T(sum_(k = 1)^n x_k v_k) \
|
||||
&= sum_(k = 1)^n T(x_k v_k) \
|
||||
&= sum_(k = 1)^n x_k T v_k \
|
||||
&= sum_(k = 1)^n x_k sum_(j = 1)^m A_(j, k) w_j \
|
||||
&= sum_(j = 1)^m w_j sum_(k = 1)^n A_(j, k) x_k \
|
||||
&= (A_(1, 1)x_1 + dots.c + A_(1, n) x_n, dots, A_(m, 1) x_1 + dots.c + A_(m, n) x_n) $
|
||||
|
||||
#tab 这立即给出了我们想要的结果。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user