mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
2A p2
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
7bdedf4c6f
commit
0450974138
@ -1,4 +1,5 @@
|
||||
#import "../styles.typ": exercise_sol, note, tab
|
||||
#import "../math.typ": Poly
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $b, c in RR$。定义
|
||||
@ -38,3 +39,35 @@
|
||||
|
||||
#tab 综上所述,$T$ 是线性映射,当且仅当 $b = c = 0$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $b, c in RR$。定义
|
||||
|
||||
$ T:& Poly(RR) -> RR^2 \ &p |-> vec(3p(4) + 5p'(6) + b p(1)p(2), integral_(-1)^2 x^3 p(x) dif x + c sin p(0)) $
|
||||
|
||||
证明:$T$ 是线性映射,当且仅当,$b = c = 0$。
|
||||
][
|
||||
首先,假设 $b = c = 0$。则 $T(p) = (3p(4) + 5p'(6), integral_(-1)^2 x^3 p(x) dif x)$,我们逐条验证线性映射的定义(原书3.1)中的要求:
|
||||
|
||||
/ 可加性: 对任意 $p, q in Poly(RR)$,$T(p + q) = T p + T q$。 \
|
||||
证明:设 $p, q in Poly(RR)$,则
|
||||
$ T(p + q) &= (3(p + q)(4) + 5(p + q)'(6), integral_(-1)^2 x^3 (p + q)(x) dif x) \
|
||||
&= (3p(4) + 3q(4) + 5p'(6) + 5q'(6), integral_(-1)^2 x^3 p(x) dif x + integral_(-1)^2 x^3 q(x) dif x) \
|
||||
&= (3p(4) + 5p'(6), integral_(-1)^2 x^3 p(x) dif x) + (3q(4) + 5q'(6), integral_(-1)^2 x^3 q(x) dif x) \
|
||||
&= T p + T q $
|
||||
|
||||
/ 齐次性: 对任意 $p in Poly(RR)$ 和任意 $lambda in RR$,$T(lambda p) = lambda T p$。 \
|
||||
证明:设 $p in Poly(RR)$,则
|
||||
$ T(lambda p) &= (3(lambda p)(4) + 5(lambda p)'(6), integral_(-1)^2 x^3 (lambda p)(x) dif x) \
|
||||
&= (lambda (3p(4)) + lambda (5p'(6)), lambda integral_(-1)^2 x^3 p(x) dif x) \
|
||||
&= lambda (3p(4), integral_(-1)^2 x^3 p(x) dif x) \
|
||||
&= lambda T p $
|
||||
|
||||
#tab 综上,$T$ 满足线性映射的定义。
|
||||
|
||||
#tab 另一方面,假设 $T$ 是线性映射。设 $p: x |-> x + 1$。则根据齐次性的要求,有
|
||||
|
||||
$ T(2p) = (40 + 24b, 207 / 10 + c sin 2) = (40 + 12b, 207 / 10 + 2c sin 1) = 2 T(p) $
|
||||
|
||||
#tab 解得 $b = c = 0$。这就是说 $T$ 是线性映射,当且仅当 $b = c = 0$。
|
||||
]
|
||||
|
@ -99,6 +99,7 @@
|
||||
))
|
||||
set footnote(numbering: "注1")
|
||||
show math.equation: set text(font: mathfont)
|
||||
set math.vec(delim: ("[", "]"))
|
||||
|
||||
hide[#title <book-title>]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user