Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-07-27 16:40:17 +08:00
parent e021eea065
commit 7bdedf4c6f
Signed by: szTom
GPG Key ID: 072D999D60C6473C
2 changed files with 43 additions and 0 deletions

40
sections/3A.typ Normal file
View File

@ -0,0 +1,40 @@
#import "../styles.typ": exercise_sol, note, tab
#exercise_sol(type: "proof")[
$b, c in RR$。定义
$ T:& RR^3 -> RR^2 \ &(x, y, z) |-> (2x - 4y + 3z + b, 6x + c x y z) $
证明:$T$ 是线性映射,当且仅当,$b = c = 0$
][
首先,假设 $b = c = 0$。则 $T(x, y, z) = (2x - 4y + 3z, 6 x)$我们逐条验证线性映射的定义原书3.1)中的要求:
/ 可加性: 对任意 $u, v in RR^3$$T(u + v) = T u + T v$ \
证明:设 $u = (u_1, u_2, u_3)$$v = (v_1, v_2, v_3)$,则
$ T(u + v) &= T(u_1 + v_1, u_2 + v_2, u_3 + v_3) \
&= (2(u_1 + v_1) - 4(u_2 + v_2) + 3(u_3 + v_3), 6(u_1 + v_1)) \
&= (2u_1 - 4u_2 + 3u_3, 6u_1) + (2v_1 - 4v_2 + 3v_3, 6v_1) \
&= T u + T v $
/ 齐次性: 对任意 $u in RR^3$ 和任意 $lambda in RR$$T(lambda u) = lambda T u$ \
证明:设 $u = (u_1, u_2, u_3)$,则
$ T(lambda u) &= T(lambda u_1, lambda u_2, lambda u_3) \
&= (2(lambda u_1) - 4(lambda u_2) + 3(lambda u_3), 6(lambda u_1)) \
&= lambda (2u_1 - 4u_2 + 3u_3, 6u_1) \
&= lambda T u $
#tab 综上,$T$ 满足线性映射的定义。
#tab 另一方面,假设 $T$ 是线性映射。则根据线性映射将 $0$ 映射到 $0$原书3.10),有
$ T(0, 0, 0) &= (2 dot 0 - 4 dot 0 + 3 dot 0 + b, 6 dot 0 + c dot 0) \
&= (b, 0) = (0, 0) $
#tab 因此 $b = 0$。另一方面,设 $u = (1, 1, 1)$,则根据齐次性的要求,有
$ T(2u) = (2, 12 + 8c) = (2, 12 + 2c) = 2 T(u) $
#tab 于是,$c = 0$
#tab 综上所述,$T$ 是线性映射,当且仅当 $b = c = 0$
]

View File

@ -4,4 +4,7 @@
), (
title: [有限维向量空间],
sections: ([张成空间和线性无关性], [基], [维数]),
), (
title: [线性映射],
sections: ([线性映射的向量空间],),
))