Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-07-27 22:27:17 +08:00
parent 0450974138
commit 0142424012
Signed by: szTom
GPG Key ID: 072D999D60C6473C
2 changed files with 27 additions and 1 deletions

View File

@ -2,6 +2,7 @@
#let ii = "i"
#let span = $op("span")$
#let Poly = math.cal("P")
#let LinearMap = math.cal("L")
#let complexification(vv) = $vv_upright(C)$
#let rhs = "R.H.S."
#let lhs = "L.H.S."

View File

@ -1,5 +1,5 @@
#import "../styles.typ": exercise_sol, note, tab
#import "../math.typ": Poly
#import "../math.typ": Poly, LinearMap
#exercise_sol(type: "proof")[
$b, c in RR$。定义
@ -71,3 +71,28 @@
#tab 解得 $b = c = 0$。这就是说 $T$ 是线性映射,当且仅当 $b = c = 0$
]
#exercise_sol(type: "proof")[
$T in LinearMap(FF^n, FF^m)$。证明:对于 $j in {1, dots, m}$ $k in {1, dots, n}$,存在标量 $A_(j, k) in FF$,使得对于任意 $(x_1, dots, x_n) in FF^n$
$ T(x_1, dots, x_n) = (A_(1, 1)x_1 + dots.c + A_(1, n) x_n, dots, A_(m, 1) x_1 + dots.c + A_(m, n) x_n) $
#note[此习题表明,线性映射 $T$ 具有在原书例3.3的倒数第二个例子中预示的形式。]
][
对于 $j in {1, dots, m}$ $k in {1, dots, n}$,令 $w_j in FF^m$ $v_k in FF^n$ 分别为第 $j$ 个和第 $k$ 个分量为 $1$,其余分量为 $0$ 的向量。
#tab 容易发现,$w_1, dots, w_m$ $FF^m$ 的基,$v_1, dots, v_n$ $FF^n$ 的基。于是,对于任意 $k in {1, dots, n}$,可以找到 $A_(1, 1), dots, A_(m, 1) in FF$,使得
$ T v_k = A_(1, k) w_1 + dots.c + A_(m, k) w_m $
#tab 另一方面,根据 $v_k$ 的定义,我们知道 $(x_1, dots, x_n) = x_1 v_1 + dots.c + x_n v_n$。同时,考虑到 $T$ 是线性映射,我们有
$ T(x_1, dots, x_n) &= T(sum_(k = 1)^n x_k v_k) \
&= sum_(k = 1)^n T(x_k v_k) \
&= sum_(k = 1)^n x_k T v_k \
&= sum_(k = 1)^n x_k sum_(j = 1)^m A_(j, k) w_j \
&= sum_(j = 1)^m w_j sum_(k = 1)^n A_(j, k) x_k \
&= (A_(1, 1)x_1 + dots.c + A_(1, n) x_n, dots, A_(m, 1) x_1 + dots.c + A_(m, n) x_n) $
#tab 这立即给出了我们想要的结果。
]