mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3B 27
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
89a7188286
commit
018639e412
@ -527,3 +527,19 @@
|
||||
|
||||
#tab 综上所述,$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $P in LinearMap(V)$,且 $P^2 = P$。证明:$V = null P plus.circle range P$。
|
||||
][
|
||||
设 $v in V$,则 $P v = P (P v)$,故 $P (v - P v) = 0$,即 $v - P v in null P$,另一方面,$P v in range P$,即
|
||||
|
||||
$ v = (v - P v) + P v $
|
||||
|
||||
#tab 其中 $v - P v in null N$ 且 $P v in range P$,故 $V = null P + range P$。
|
||||
|
||||
#tab 下面说明这个和是直和。设 $v in null P inter range P$,则 $P v = 0$ 且存在 $w in V$,使得 $v = P w$。故
|
||||
|
||||
$ 0 = P v = P^2 w = P w = v $
|
||||
|
||||
#tab 即 $null P inter range P = {0}$。因此,根据“两个子空间的直和”(原书1.46),得 $V = null P plus.circle range P$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user