Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-08-12 00:37:49 +08:00
parent 1160c3a30a
commit 89a7188286
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -507,3 +507,23 @@
#tab 综上所述,$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$
]
#exercise_sol(type: "proof")[
$V$ 是有限维向量空间,$S, T in LinearMap(V)$。证明:$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$
][
首先假设 $range S subset.eq range T$。设 $v_1, dots, v_m$ $V$ 的一组基。对于每个 $i in {1, dots, m}$,由于 $S v_i in range S subset.eq range T$,因此存在 $u_i in V$,使得 $T u_i = S v_i$
#tab 根据线性映射引理原书3.4),存在 $E in LinearMap(V, V)$,使得对于任意 $i in {1, dots, m}$,有 $E v_i = u_i$。设 $v in V$,将 $v$ 表示为 $v = a_1 v_1 + dots.c + a_m v_m$,其中 $a_1, dots, a_m in FF$。则
$ S v = S (sum_(k = 1)^m a_k v_k) = T (sum_(k = 1)^m a_k u_k) = T (sum_(k = 1)^m a_k E v_k) = T E v $
#tab 这说明 $S = T E$
#tab 另一方面,现在假设存在 $E in LinearMap(V)$,使得 $S = T E$。设 $w in range S$,则存在 $v in V$,使得 $S v = w$。因此
$ w = S v = T E v = T (E v) in range T $
#tab 这说明 $range S subset.eq range T$
#tab 综上所述,$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$
]