mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
2C p19-p20
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
dcf34648c8
commit
113abb5079
2
math.typ
2
math.typ
@ -3,3 +3,5 @@
|
||||
#let span = $op("span")$
|
||||
#let Poly = math.cal("P")
|
||||
#let complexification(vv) = $vv_upright(C)$
|
||||
#let rhs = "R.H.S."
|
||||
#let lhs = "L.H.S."
|
||||
|
@ -1,5 +1,9 @@
|
||||
#import "@preview/cetz:0.4.0"
|
||||
#import "@preview/cetz-venn:0.1.4"
|
||||
|
||||
#import "../styles.typ": exercise_sol, note, tab, exercise_ref, math_numbering
|
||||
#import "../math.typ": span, Poly
|
||||
#import "../math.typ": span, Poly, rhs, lhs
|
||||
#import "../color.typ": theme_color_set, aux_color_set, text_color_set
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
证明:$RR^2$ 的子空间恰有 ${0}$,$RR^2$ 中所有过原点的直线,以及 $RR^2$ 本身。
|
||||
@ -432,3 +436,69 @@
|
||||
][
|
||||
设 $v_1, dots, v_n$ 是 $V$ 的一组基。我们可以取 $V_k = span(v_k)$,其中 $k in {1, dots, n}$。注意到 $dim V_k = 1$,因此 $V_1, dots, V_n$ 都是 $V$ 的一维子空间。根据基的判定准则(原书2.28)和直和的定义(原书1.41),我们立即得到 $V = V_1 plus.circle dots.c plus.circle V_n$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "explain")[
|
||||
受三个有限集的并集的元素数量公式的启发,你可能会这样猜测:若 $V_1, V_2, V_3$ 是一个有限维向量空间的子空间,那么有
|
||||
|
||||
$ dim(V_1 + V_2 + V_3) =& dim V_1 + dim V_2 + dim V_3 \
|
||||
&- dim(V_1 inter V_2) - dim(V_1 inter V_3) - dim(V_2 inter V_3) \
|
||||
&+ dim(V_1 inter V_2 inter V_3) $
|
||||
|
||||
解释一下为什么这样猜测,然后证明以上公式,或给出反例。
|
||||
][
|
||||
有限集的并集的元素数量公式,由容斥原理给出,对于三个集合而言,
|
||||
|
||||
$ \#(A union B union C) =& \#A + \#B + \#C \
|
||||
&- \#(A inter B) - \#(A inter C) - \#(B inter C) \
|
||||
&+ \#(A inter B inter C) $
|
||||
|
||||
#figure(cetz.canvas({
|
||||
let c1 = theme_color_set.at("60")
|
||||
let c2 = aux_color_set.at("100")
|
||||
let c3 = theme_color_set.at("100")
|
||||
cetz-venn.venn3(
|
||||
stroke: 1pt + text_color_set.at("100"),
|
||||
a-fill: c1,
|
||||
b-fill: c1,
|
||||
c-fill: c1,
|
||||
ab-fill: c2,
|
||||
ac-fill: c2,
|
||||
bc-fill: c2,
|
||||
abc-fill: c3,
|
||||
)
|
||||
}), caption: [三个集合的韦恩图。], placement: auto)
|
||||
|
||||
#tab 这能够很自然地迁移到有关子空间维数的公式上来。然而,这一猜想并不正确,考虑取
|
||||
|
||||
$ V_1 &= {(0, x) in RR^2 : x in RR} \
|
||||
V_2 &= {(x, 0) in RR^2 : x in RR} \
|
||||
V_3 &= {(x, x) in RR^2 : x in RR} $
|
||||
|
||||
#tab 则 $dim V_1 = dim V_2 = dim V_3 = 1$,$dim(V_1 inter V_2) = dim(V_1 inter V_3) = dim(V_2 inter V_3) = 0$,$dim(V_1 inter V_2 inter V_3) = 0$,然而 $dim(V_1 + V_2 + V_3) = 2 != 1 + 1 + 1 - 0 - 0 - 0 + 0 = 3$。
|
||||
|
||||
#tab 因此,该猜想是错误的。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
已知 $V_1$,$V_2$ 和 $V_3$ 都是一个有限维向量空间的子空间,证明:
|
||||
|
||||
$ dim(V_1 + V_2 + V_3) =& dim V_1 + dim V_2 + dim V_3 \
|
||||
&-dim(V_1 inter V_2)/3 - dim(V_1 inter V_3)/3 - dim(V_2 inter V_3) / 3 \
|
||||
&-dim((V_1 + V_2) inter V_3)/3 \
|
||||
&-dim((V_1 + V_3) inter V_2)/3 \
|
||||
&-dim((V_2 + V_3) inter V_1)/3 $
|
||||
|
||||
#note[上面公式初看可能有些奇怪,因为等式右边是否是整数令人怀疑。]
|
||||
][
|
||||
等式两边同时乘以 $3$,并利用子空间之和的维数(原书2.43)将形如 $dim(A inter B)$ 的项代换,我们得到#footnote[$rhs$ 是 Right Hand Side 的缩写,表示等式右边的表达式。对称地,$lhs$ 是 Left Hand Side 的缩写,表示等式左边的表达式。]
|
||||
|
||||
$ 3rhs =& 3dim V_1 + 3dim V_2 + 3dim V_3 \
|
||||
&- (dim V_1 + dim V_2 - dim(V_1 + V_2)) \
|
||||
&- (dim V_1 + dim V_3 - dim(V_1 + V_3)) \
|
||||
&- (dim V_2 + dim V_3 - dim(V_2 + V_3)) \
|
||||
&- (dim(V_1 + V_2) + dim V_3 - dim(V_1 + V_2 + V_3)) \
|
||||
&- (dim(V_1 + V_3) + dim V_2 - dim(V_1 + V_3 + V_2)) \
|
||||
&- (dim(V_2 + V_3) + dim V_1 - dim(V_2 + V_3 + V_1)) $
|
||||
|
||||
#tab 整理后,立即给出了等式两边相等的结果。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user