mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
2A p13
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
8fff57fbad
commit
3b7c51ab1f
@ -311,3 +311,47 @@
|
|||||||
|
|
||||||
#tab 根据张成空间的定义(原书定义2.4),这表明 $w in span(v_1, dots, v_m)$。
|
#tab 根据张成空间的定义(原书定义2.4),这表明 $w in span(v_1, dots, v_m)$。
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#exercise_sol(type: "proof")[
|
||||||
|
设 $v_1, dots, v_m$ 是 $V$ 中的线性无关向量组,且 $w in V$。证明:
|
||||||
|
|
||||||
|
$ v_1, dots, v_m, w "线性无关" quad <==> quad w in.not span(v_1, dots, v_m) $
|
||||||
|
][
|
||||||
|
首先说明充分性:现在 $v_1, dots, v_m, w$ 线性无关。反证假设 $w in span(v_1, dots, v_m)$,则根据张成空间的定义(原书定义2.4),存在 $a_1, dots, a_m in FF$,使得
|
||||||
|
|
||||||
|
$ w = a_1 v_1 + dots.c + a_m v_m $
|
||||||
|
|
||||||
|
#tab 整理得到
|
||||||
|
|
||||||
|
$ a_1 v_1 + dots.c + a_m v_m + (-1)w = 0 $
|
||||||
|
|
||||||
|
#tab 根据线性无关的定义(原书定义2.15),这与 $v_1, dots, v_m, w$ 线性无关矛盾,因此,$w in.not span(v_1, dots, v_m)$。
|
||||||
|
|
||||||
|
#tab 然后说明必要性:现在 $w in.not span(v_1, dots, v_m)$。反证假设 $v_1, dots, v_m, w$ 线性相关。根据线性相关的定义(原书定义2.17),存在 $a_1, dots, a_(m+1) in FF$,使得
|
||||||
|
|
||||||
|
#show: math_numbering(true)
|
||||||
|
$ a_1 v_1 + dots.c + a_m v_m + a_(m+1) w = 0 $ <2A-v-plus-w-is-dependent-def>
|
||||||
|
#show: math_numbering(false)
|
||||||
|
|
||||||
|
#tab 其中 $a_1, dots, a_(m+1)$ 中至少有一个不为 $0$。我们有 $a_(m+1) != 0$。这是因为,如果 $a_(m+1) = 0$,则我们可以将@2A-v-plus-w-is-dependent-def 改写为
|
||||||
|
|
||||||
|
$ a_1 v_1 + dots.c + a_m v_m = 0 $
|
||||||
|
|
||||||
|
#tab 这与题目条件中 $v_1, dots, v_m$ 线性无关矛盾。因此,$a_(m+1) != 0$。
|
||||||
|
|
||||||
|
#tab 所以,我们可以将@2A-v-plus-w-is-dependent-def 改写为
|
||||||
|
|
||||||
|
$ w = -(a_1 v_1 + dots.c + a_m v_m) / a_(m+1) $
|
||||||
|
|
||||||
|
#tab 更进一步地,对于 $k in {1, dots, m}$,令
|
||||||
|
|
||||||
|
$ b_k = -a_k / a_(m+1) $
|
||||||
|
|
||||||
|
#tab 则有
|
||||||
|
|
||||||
|
$ w = b_1 v_1 + dots.c + b_m v_m $
|
||||||
|
|
||||||
|
#tab 这表明 $w in span(v_1, dots, v_m)$,与反证假设 $w in.not span(v_1, dots, v_m)$ 矛盾。因此,$v_1, dots, v_m, w$ 线性无关。
|
||||||
|
|
||||||
|
#tab 综上所述,$v_1, dots, v_m, w$ 线性无关当且仅当 $w in.not span(v_1, dots, v_m)$。
|
||||||
|
]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user