Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-07-28 15:48:29 +08:00
parent 31e1bfa08e
commit 6bf3fd2064
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -215,3 +215,30 @@
#tab 综上所述,$T v = lambda v$ 对任意 $v in V$ 成立。
]
#exercise_sol(type: "proof")[
给出一个例子:函数 $phi: RR^2 -> RR$,使得对于任意 $a in RR$ $v in RR^2$,有
$ phi(a v) = a phi(v) $
但是 $phi$ 不是线性映射。
][
对于任意 $(x, y) in RR^2$,令
$ phi(x, y) = cases(
x wide& abs(x) >= abs(y),
y & abs(x) < abs(y),
) $
#tab $a in RR$,则当 $abs(x) >= abs(y)$ 时,$phi(x, y) = x$,且有 $abs(a x) >= abs(a y)$,于是
$ phi(a(x, y)) = phi(a x, a y) = a x = a phi(x, y) $
#tab $abs(x) < abs(y)$ 时,$phi(x, y) = y$,且有 $abs(a x) < abs(a y)$,于是
$ phi(a(x, y)) = phi(a x, a y) = a y = a phi(y) $
#tab 因此,对于任意 $a in RR$ $v in RR^2$,都有 $phi(a v) = a phi(v)$
#tab 但是 $phi$ 不是线性映射。因为当 $v = (1, 0)$ $w = (0, -1)$ 时,$phi(v + w) = phi(1, -1) = 1$,而 $phi(v) + phi(w) = phi(1, 0) + phi(0, -1) = 1 + (-1) = 0$,即 $phi(v + w) != phi(v) + phi(w)$,这违背了线性映射的可加性的要求。
]