Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-07-29 18:32:42 +08:00
parent 535536f916
commit 6dbaebcb78
Signed by: szTom
GPG Key ID: 072D999D60C6473C
4 changed files with 23 additions and 4 deletions

View File

@ -1,6 +1,8 @@
#let ee = "e" #let ee = "e"
#let ii = "i" #let ii = "i"
#let span = $op("span")$ #let span = $op("span")$
#let null = $op("null")$
#let range = $op("range")$
#let Poly = math.cal("P") #let Poly = math.cal("P")
#let LinearMap = math.cal("L") #let LinearMap = math.cal("L")
#let complexification(vv) = $vv_upright(C)$ #let complexification(vv) = $vv_upright(C)$

View File

@ -1,5 +1,5 @@
#import "../styles.typ": exercise_sol, note, tab, exercise_ref #import "../styles.typ": exercise_sol, note, tab, exercise_ref
#import "../math.typ": Poly, LinearMap, ii, span, restricted, Permutation #import "../math.typ": Poly, LinearMap, ii, span, restricted
#note[与原书一致,在本章中,如无其他说明,我们总是假定字母 $U$$V$ $W$ 都是 $FF$ 上的向量空间。] #note[与原书一致,在本章中,如无其他说明,我们总是假定字母 $U$$V$ $W$ 都是 $FF$ 上的向量空间。]
@ -217,7 +217,7 @@
] ]
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
给出一:函数 $phi: RR^2 -> RR$,使得对于任意 $a in RR$ $v in RR^2$,有 给出一例:函数 $phi: RR^2 -> RR$,使得对于任意 $a in RR$ $v in RR^2$,有
$ phi(a v) = a phi(v) $ $ phi(a v) = a phi(v) $
@ -248,7 +248,7 @@
] ]
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
给出一:函数 $phi: CC -> CC$,使得对于任意 $w, z in CC$,有 给出一例:函数 $phi: CC -> CC$,使得对于任意 $w, z in CC$,有
$ phi(w + z) = phi(w) + phi(z) $ $ phi(w + z) = phi(w) + phi(z) $

17
sections/3B.typ Normal file
View File

@ -0,0 +1,17 @@
#import "../styles.typ": exercise_sol, tab
#import "../math.typ": null, range
#exercise_sol(type: "answer")[
给出一例:满足 $dim null T = 3$ $dim range T = 2$ 的线性映射 $T$
][
$ T:& RR^5 -> RR^2 \ &(x_1, x_2, x_3, x_4, x_5) |-> (x_1, x_2) $
#tab 根据定义
$ range T &= RR^2 \
null T &= {(0, 0, x, y, z) in RR^5 : x, y, z in RR} $
#tab 于是 $dim null T = 3$ $dim range T = 2$
]

View File

@ -6,5 +6,5 @@
sections: ([张成空间和线性无关性], [基], [维数]), sections: ([张成空间和线性无关性], [基], [维数]),
), ( ), (
title: [线性映射], title: [线性映射],
sections: ([线性映射的向量空间],), sections: ([线性映射的向量空间], [零空间和值域],),
)) ))