mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
Fix lint
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
0757c97a0d
commit
7a90f5c94a
12
lint.toml
12
lint.toml
@ -27,3 +27,15 @@ name = "cjk-character-without-space-after-formula"
|
||||
pattern = "\\$[^:,、。!?()【】—;“”‘’…\\s\\x20-\\x7E]"
|
||||
enforce = true
|
||||
comment = "Missing space between $ and CJK character"
|
||||
|
||||
[[rule]]
|
||||
name = "forbid-任一"
|
||||
pattern = "任一"
|
||||
enforce = true
|
||||
comment = "Please use 任意 instead of 任一"
|
||||
|
||||
[[rule]]
|
||||
name = "forbid-对于所有"
|
||||
pattern = "对于所有"
|
||||
enforce = true
|
||||
comment = "Please use 对于任意 instead of 对于所有"
|
||||
|
@ -46,7 +46,7 @@
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
证明:对于任一 $alpha in CC$,都存在唯一的 $beta in CC$ 使得 $alpha + beta = 0$。
|
||||
证明:对于任意 $alpha in CC$,都存在唯一的 $beta in CC$ 使得 $alpha + beta = 0$。
|
||||
][
|
||||
根据定义,令 $alpha = a + b ii$(其中 $a,b in RR$),则取 $beta = (-a) + (-b) ii$,则有
|
||||
|
||||
@ -64,7 +64,7 @@
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
证明:对于任一 $alpha in CC$($alpha != 0$),都存在唯一的 $beta in CC$ 使得 $alpha beta = 1$。
|
||||
证明:对于任意 $alpha in CC$($alpha != 0$),都存在唯一的 $beta in CC$ 使得 $alpha beta = 1$。
|
||||
][
|
||||
根据定义,令 $alpha = a + b ii$(其中 $a,b in RR$),则取 $beta = (a / (a^2 + b^2)) - (b / (a^2 + b^2)) ii$,则有
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
#import "../math.typ": ii, complexification
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
证明:$-(-v)=v$ 对任一 $v in V$ 都成立。
|
||||
证明:$-(-v)=v$ 对任意 $v in V$ 都成立。
|
||||
|
||||
#note[沿用原书记号1.29,即 $V$ 表示 $FF$ 上的向量空间。下文不再赘述。]
|
||||
][
|
||||
|
Loading…
x
Reference in New Issue
Block a user