mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3B 12
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
11278f10bb
commit
8096fc0c08
@ -193,3 +193,21 @@
|
||||
#tab 由于 $T v_1, dots, T v_m$ 是线性无关的,故 $a_1 = dots.c = a_m = 0$,即 $u = 0$。因此 $U inter null T = {0}$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $T$ 是 $FF^4 -> FF^2$ 的线性映射,且
|
||||
|
||||
$ null T = {(x_1, x_2, x_3, x_4) in FF^4 : x_1 = 5x_2 and x_3 = 7 x_4} $
|
||||
|
||||
证明:$T$ 是满射。
|
||||
][
|
||||
注意到,取
|
||||
|
||||
$ v_1 &= (5, 1, 0, 0) \
|
||||
v_2 &= (0, 0, 7, 1) $
|
||||
|
||||
#tab 则 $null T = span(v_1, v_2)$,因此 $dim null T = 2$。根据线性映射基本定理(原书3.21),
|
||||
|
||||
$ dim FF^4 = dim null T + dim range T $
|
||||
|
||||
#tab 解得 $dim range T = 2$,即 $dim range T = dim FF^2$,根据“某空间中与之维数相同的子空间即为该空间本身”(原书2.39),$range T = FF^2$,即 $T$ 是满射。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user