Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-08-08 14:57:00 +08:00
parent 11278f10bb
commit 8096fc0c08
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -193,3 +193,21 @@
#tab 由于 $T v_1, dots, T v_m$ 是线性无关的,故 $a_1 = dots.c = a_m = 0$,即 $u = 0$。因此 $U inter null T = {0}$ #tab 由于 $T v_1, dots, T v_m$ 是线性无关的,故 $a_1 = dots.c = a_m = 0$,即 $u = 0$。因此 $U inter null T = {0}$
] ]
#exercise_sol(type: "proof")[
$T$ $FF^4 -> FF^2$ 的线性映射,且
$ null T = {(x_1, x_2, x_3, x_4) in FF^4 : x_1 = 5x_2 and x_3 = 7 x_4} $
证明:$T$ 是满射。
][
注意到,取
$ v_1 &= (5, 1, 0, 0) \
v_2 &= (0, 0, 7, 1) $
#tab $null T = span(v_1, v_2)$,因此 $dim null T = 2$。根据线性映射基本定理原书3.21
$ dim FF^4 = dim null T + dim range T $
#tab 解得 $dim range T = 2$,即 $dim range T = dim FF^2$根据“某空间中与之维数相同的子空间即为该空间本身”原书2.39$range T = FF^2$,即 $T$ 是满射。
]