mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-20 00:40:16 +00:00
2A p16
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
be9a21f579
commit
862e404614
@ -438,3 +438,33 @@
|
||||
|
||||
#tab 所以,在 $Poly_4(FF)$ 上不存在由六个多项式组成的线性无关组。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "explain")[
|
||||
解释为什么由四个多项式构成的向量组不可能张成 $Poly_4(FF)$。
|
||||
][
|
||||
对于 $k in {0, dots, 4}$,令
|
||||
|
||||
$ p_k:& FF -> FF \ &z |-> z^k $
|
||||
|
||||
#tab 我们现在论证向量组 $p_0, dots, p_4$ 是线性无关的:设 $a_0, dots, a_4 in FF$,满足
|
||||
|
||||
$ a_0 p_0 + a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4 = 0 $
|
||||
|
||||
#tab 即对于任意 $z in FF$,有
|
||||
|
||||
$ a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 = 0 $
|
||||
|
||||
#tab 分别取 $z in {0, dots, 4}$,得到方程组
|
||||
|
||||
$ cases(
|
||||
a_0 = 0,
|
||||
a_0 + a_1 + a_2 + a_3 + a_4 = 0,
|
||||
a_0 + 2a_1 + 4a_2 + 8a_3 + 16a_4 = 0,
|
||||
a_0 + 3a_1 + 9a_2 + 27a_3 + 81a_4 = 0,
|
||||
a_0 + 4a_1 + 16a_2 + 64a_3 + 256a_4 = 0
|
||||
) $
|
||||
|
||||
#tab 解得 $a_0 = a_1 = a_2 = a_3 = a_4 = 0$,因此向量组 $p_0, dots, p_4$ 是线性无关的。
|
||||
|
||||
#tab 因此,根据“线性无关组的长度 $<=$ 张成组的长度”(原书定理2.22),$Poly_4(FF)$ 上的张成组的长度不少于 $5$。因此,由四个多项式构成的向量组不可能张成 $Poly_4(FF)$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user