mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3B 30
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
c93b7043ee
commit
d51c49c30a
@ -567,3 +567,19 @@
|
|||||||
|
|
||||||
#tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$。
|
#tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$。
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#exercise_sol(type: "proof")[
|
||||||
|
设 $phi in LinearMap(V, FF)$,$u in V$,满足 $phi != 0$ 且 $u in.not null phi$。证明:
|
||||||
|
|
||||||
|
$ V = null phi plus.circle {a u : a in FF} $
|
||||||
|
][
|
||||||
|
设 $v in V$,满足 $phi v != 0$。令 $k = (phi v) / (phi u) in FF$,则 $phi (k u) = phi v$,故 $phi (v - k u) = 0$,即 $v - k u in null phi$。因此
|
||||||
|
|
||||||
|
$ v = (v - k u) + k u $
|
||||||
|
|
||||||
|
#tab 其中 $v - k u in null phi$ 且 $k u in {a u : a in FF}$,故 $V = null phi + {a u : a in FF}$。现在说明这个和是直和:将 $0$ 表示为 $0 = v + w$,其中 $v in null phi$ 且 $w in {a u : a in FF}$,于是
|
||||||
|
|
||||||
|
$ phi 0 = phi (v + w) = phi w $
|
||||||
|
|
||||||
|
#tab 设 $w = a u$,则 $phi w = a phi u$,由于 $phi u != 0$,故 $a = 0$,即 $w = 0$。进一步,由于 $0 = v + w$,故 $v = 0$。根据直和的条件(原书1.45),得 $V = null phi plus.circle {a u : a in FF}$。
|
||||||
|
]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user