Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-08-14 10:23:11 +08:00
parent c93b7043ee
commit d51c49c30a
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -567,3 +567,19 @@
#tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$
]
#exercise_sol(type: "proof")[
$phi in LinearMap(V, FF)$$u in V$,满足 $phi != 0$ $u in.not null phi$。证明:
$ V = null phi plus.circle {a u : a in FF} $
][
$v in V$,满足 $phi v != 0$。令 $k = (phi v) / (phi u) in FF$,则 $phi (k u) = phi v$,故 $phi (v - k u) = 0$,即 $v - k u in null phi$。因此
$ v = (v - k u) + k u $
#tab 其中 $v - k u in null phi$ $k u in {a u : a in FF}$,故 $V = null phi + {a u : a in FF}$。现在说明这个和是直和:将 $0$ 表示为 $0 = v + w$,其中 $v in null phi$ $w in {a u : a in FF}$,于是
$ phi 0 = phi (v + w) = phi w $
#tab $w = a u$,则 $phi w = a phi u$,由于 $phi u != 0$,故 $a = 0$,即 $w = 0$。进一步,由于 $0 = v + w$,故 $v = 0$。根据直和的条件原书1.45),得 $V = null phi plus.circle {a u : a in FF}$
]