mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
为部分figure设置wrap
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
fdb7253e34
commit
d730f1068f
@ -520,6 +520,7 @@
|
|||||||
table(
|
table(
|
||||||
columns: 4,
|
columns: 4,
|
||||||
stroke: none,
|
stroke: none,
|
||||||
|
inset: 5pt,
|
||||||
align: top + left,
|
align: top + left,
|
||||||
..for k in range(1, 5) {
|
..for k in range(1, 5) {
|
||||||
(box(cetz.canvas({
|
(box(cetz.canvas({
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#import "@preview/cetz:0.4.0"
|
#import "@preview/cetz:0.4.0"
|
||||||
#import "@preview/cetz-venn:0.1.4"
|
#import "@preview/cetz-venn:0.1.4"
|
||||||
|
#import "@preview/wrap-it:0.1.1": wrap-content
|
||||||
|
|
||||||
#import "../styles.typ": exercise_sol, note, tab, exercise_ref, math_numbering
|
#import "../styles.typ": exercise_sol, note, tab, exercise_ref, math_numbering
|
||||||
#import "../math.typ": span, Poly, rhs, lhs
|
#import "../math.typ": span, Poly, rhs, lhs
|
||||||
@ -448,16 +449,13 @@
|
|||||||
][
|
][
|
||||||
有限集的并集的元素数量公式,由容斥原理给出,对于三个集合而言,
|
有限集的并集的元素数量公式,由容斥原理给出,对于三个集合而言,
|
||||||
|
|
||||||
$ \#(A union B union C) =& \#A + \#B + \#C \
|
#[
|
||||||
&- \#(A inter B) - \#(A inter C) - \#(B inter C) \
|
#show: wrap-content.with(figure(cetz.canvas({
|
||||||
&+ \#(A inter B inter C) $
|
let c1 = aux_color_set.at("80")
|
||||||
|
let c2 = theme_color_set.at("60")
|
||||||
#figure(cetz.canvas({
|
let c3 = theme_color_set.at("80")
|
||||||
let c1 = theme_color_set.at("60")
|
|
||||||
let c2 = aux_color_set.at("100")
|
|
||||||
let c3 = theme_color_set.at("100")
|
|
||||||
cetz-venn.venn3(
|
cetz-venn.venn3(
|
||||||
stroke: 1pt + text_color_set.at("100"),
|
stroke: 1pt + theme_color_set.at("100"),
|
||||||
a-fill: c1,
|
a-fill: c1,
|
||||||
b-fill: c1,
|
b-fill: c1,
|
||||||
c-fill: c1,
|
c-fill: c1,
|
||||||
@ -466,13 +464,18 @@
|
|||||||
bc-fill: c2,
|
bc-fill: c2,
|
||||||
abc-fill: c3,
|
abc-fill: c3,
|
||||||
)
|
)
|
||||||
}), caption: [三个集合的韦恩图。], placement: auto)
|
}), caption: [三个集合的韦恩图。]))
|
||||||
|
|
||||||
|
$ \#(A union B union C) =& \#A + \#B + \#C \
|
||||||
|
&- \#(A inter B) - \#(A inter C) - \#(B inter C) \
|
||||||
|
&+ \#(A inter B inter C) $
|
||||||
|
|
||||||
#tab 这能够很自然地迁移到有关子空间维数的公式上来。然而,这一猜想并不正确,考虑取
|
#tab 这能够很自然地迁移到有关子空间维数的公式上来。然而,这一猜想并不正确,考虑取
|
||||||
|
|
||||||
$ V_1 &= {(0, x) in RR^2 : x in RR} \
|
$ V_1 &= {(0, x) in RR^2 : x in RR} \
|
||||||
V_2 &= {(x, 0) in RR^2 : x in RR} \
|
V_2 &= {(x, 0) in RR^2 : x in RR} \
|
||||||
V_3 &= {(x, x) in RR^2 : x in RR} $
|
V_3 &= {(x, x) in RR^2 : x in RR} $
|
||||||
|
]
|
||||||
|
|
||||||
#tab 则 $dim V_1 = dim V_2 = dim V_3 = 1$,$dim(V_1 inter V_2) = dim(V_1 inter V_3) = dim(V_2 inter V_3) = 0$,$dim(V_1 inter V_2 inter V_3) = 0$,然而 $dim(V_1 + V_2 + V_3) = 2 != 1 + 1 + 1 - 0 - 0 - 0 + 0 = 3$。
|
#tab 则 $dim V_1 = dim V_2 = dim V_3 = 1$,$dim(V_1 inter V_2) = dim(V_1 inter V_3) = dim(V_2 inter V_3) = 0$,$dim(V_1 inter V_2 inter V_3) = 0$,然而 $dim(V_1 + V_2 + V_3) = 2 != 1 + 1 + 1 - 0 - 0 - 0 + 0 = 3$。
|
||||||
|
|
||||||
|
@ -1,5 +1,4 @@
|
|||||||
#import "@preview/showybox:2.0.4": showybox
|
#import "@preview/showybox:2.0.4": showybox
|
||||||
#import "@preview/tableau-icons:0.1.0" as tbl
|
|
||||||
#import "@preview/cetz:0.4.0"
|
#import "@preview/cetz:0.4.0"
|
||||||
#import "@preview/cetz-plot:0.1.2": plot
|
#import "@preview/cetz-plot:0.1.2": plot
|
||||||
|
|
||||||
@ -23,7 +22,7 @@
|
|||||||
|
|
||||||
#let showy_wrapper(title: "", margin: none, ..args) = {
|
#let showy_wrapper(title: "", margin: none, ..args) = {
|
||||||
let b = if title != "" {
|
let b = if title != "" {
|
||||||
showybox(title: text(font: zhfont_sans, title, weight: "regular"), ..args)
|
showybox(title: text(font: zhfont_sans, title, weight: "semibold"), ..args)
|
||||||
} else {
|
} else {
|
||||||
showybox(title: title, ..args)
|
showybox(title: title, ..args)
|
||||||
}
|
}
|
||||||
@ -36,7 +35,7 @@
|
|||||||
}
|
}
|
||||||
|
|
||||||
#let simple_box = showy_wrapper.with(
|
#let simple_box = showy_wrapper.with(
|
||||||
breakable: true,
|
breakable: false,
|
||||||
title-style: (
|
title-style: (
|
||||||
weight: 900,
|
weight: 900,
|
||||||
color: text_color_set.at("100"),
|
color: text_color_set.at("100"),
|
||||||
@ -92,8 +91,8 @@
|
|||||||
set text(11pt)
|
set text(11pt)
|
||||||
show figure.caption: set text(9pt, font: zhfont_fangsong)
|
show figure.caption: set text(9pt, font: zhfont_fangsong)
|
||||||
show footnote.entry: set text(9pt, font: zhfont_fangsong)
|
show footnote.entry: set text(9pt, font: zhfont_fangsong)
|
||||||
set table(stroke: 1pt + theme_color_set.at("100"), inset: 5pt)
|
// set table(stroke: 1pt + theme_color_set.at("100"), inset: 5pt)
|
||||||
set grid(stroke: 1pt + theme_color_set.at("100"))
|
// set grid(stroke: 1pt + theme_color_set.at("100"))
|
||||||
set highlight(fill: none, stroke: (
|
set highlight(fill: none, stroke: (
|
||||||
bottom: 4pt + theme_color_set.at("10")
|
bottom: 4pt + theme_color_set.at("10")
|
||||||
))
|
))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user