mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3C p3
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
fb19713a43
commit
faa17267a6
@ -40,3 +40,24 @@
|
||||
|
||||
#tab 由于 $w_1, dots, w_m$ 线性无关,因此对于 $k in {1, dots, m}$,都有 $A_(k, j) = 1$。因此,$Matrix(T)$ 的所有元素都是 $1$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $v_1, dots, v_n$ 是 $V$ 的一组基,$w_1, dots, w_m$ 是 $W$ 的一组基。证明:
|
||||
|
||||
+ 若 $S, T in LinearMap(V, W)$,则 $M(S + T) = M(S) + M(T)$;
|
||||
+ 若 $lambda in FF$,$T in LinearMap(V, W)$,则 $M(lambda T) = lambda M(T) $。
|
||||
|
||||
#note[本题是在让你验证原书3.35和3.38。]
|
||||
][
|
||||
对于(a),记 $A = M(S)$,$B = M(T)$,$C = M(S + T)$。则对于 $j in {1, dots, n}$,有
|
||||
|
||||
$ sum_(k=1)^m C_(k, j) w_k = (S + T) v_j = S v_j + T v_j = sum_(k=1)^m (A_(k, j) + B_(k, j)) w_k $
|
||||
|
||||
#tab 故 $C_(k, j) = A_(k, j) + B_(k, j)$,即 $C = A + B$。
|
||||
|
||||
#tab 对于(b),记 $A = M(T)$,$B = M(lambda T)$。则对于 $j in {1, dots, n}$,有
|
||||
|
||||
$ sum_(k=1)^m B_(k, j) w_k = (lambda T) v_j = lambda (T v_j) = sum_(k=1)^m (lambda A_(k, j)) w_k $
|
||||
|
||||
#tab 故 $B_(k, j) = lambda A_(k, j)$,即 $B = lambda A$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user