Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-09-08 15:29:07 +08:00
parent fb19713a43
commit faa17267a6
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -40,3 +40,24 @@
#tab 由于 $w_1, dots, w_m$ 线性无关,因此对于 $k in {1, dots, m}$,都有 $A_(k, j) = 1$。因此,$Matrix(T)$ 的所有元素都是 $1$
]
#exercise_sol(type: "proof")[
$v_1, dots, v_n$ $V$ 的一组基,$w_1, dots, w_m$ $W$ 的一组基。证明:
+ $S, T in LinearMap(V, W)$,则 $M(S + T) = M(S) + M(T)$
+ $lambda in FF$$T in LinearMap(V, W)$,则 $M(lambda T) = lambda M(T) $
#note[本题是在让你验证原书3.35和3.38。]
][
对于a $A = M(S)$$B = M(T)$$C = M(S + T)$。则对于 $j in {1, dots, n}$,有
$ sum_(k=1)^m C_(k, j) w_k = (S + T) v_j = S v_j + T v_j = sum_(k=1)^m (A_(k, j) + B_(k, j)) w_k $
#tab $C_(k, j) = A_(k, j) + B_(k, j)$,即 $C = A + B$
#tab 对于b $A = M(T)$$B = M(lambda T)$。则对于 $j in {1, dots, n}$,有
$ sum_(k=1)^m B_(k, j) w_k = (lambda T) v_j = lambda (T v_j) = sum_(k=1)^m (lambda A_(k, j)) w_k $
#tab $B_(k, j) = lambda A_(k, j)$,即 $B = lambda A$
]