mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3B 25
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
47ecc2ff1f
commit
fc2200bf0a
@ -476,7 +476,7 @@
|
||||
|
||||
#exercise_sol(type: "answer")[
|
||||
+ 设 $dim V = 5$,且 $S, T in LinearMap(V)$,使得 $S T = 0$。证明 $dim range T S <= 2$;
|
||||
+ 给出一例:$S, T in LinearMap(V)$,使得 $S T = 0$ 且 $dim range T S = 2$。
|
||||
+ 给出一例:$S, T in LinearMap(FF^5)$,使得 $S T = 0$ 且 $dim range T S = 2$。
|
||||
][
|
||||
对于(a),根据线性映射基本定理(原书3.21),有
|
||||
|
||||
@ -499,9 +499,9 @@
|
||||
|
||||
#tab 这说明 $3 <= dim null S <= dim null T S$,再根据线性映射基本定理(原书3.21),可得 $dim range T S <= 2$。
|
||||
|
||||
#tab 对于(b),设 $v_1, dots, v_5$ 是 $V$ 的一组基。根据线性映射引理(原书3.4),存在 $S, T in LinearMap(V)$,使得 $S v_1 = S v_2 = S v_3 = 0$,$S v_4 = v_4$,$S v_5 = v_5$,以及 $T v_1 = T v_2 = T v_3 = 0$,$T v_4 = v_1$,$T v_5 = v_2$。
|
||||
#tab 对于(b),设 $v_1, dots, v_5$ 是 $FF^5$ 的一组基。根据线性映射引理(原书3.4),存在 $S, T in LinearMap(V)$,使得 $S v_1 = S v_2 = S v_3 = 0$,$S v_4 = v_4$,$S v_5 = v_5$,以及 $T v_1 = T v_2 = T v_3 = 0$,$T v_4 = v_1$,$T v_5 = v_2$。
|
||||
|
||||
#tab 设 $v in V$,将 $v$ 表示为
|
||||
#tab 设 $v in FF^5$,将 $v$ 表示为
|
||||
|
||||
$ v = a_1 v_1 + dots.c + a_5 v_5 $
|
||||
|
||||
@ -519,5 +519,33 @@
|
||||
&= a_4 T v_4 + a_5 T v_5 \
|
||||
&= a_4 v_1 + a_5 v_2 $
|
||||
|
||||
#tab 这说明 $range T S = span(v_1, v_2)$,因此 $dim range T S = 2$。综上所述,$S, T in LinearMap(V)$,使得 $S T = 0$ 且 $dim range T S = 2$。
|
||||
#tab 这说明 $range T S = span(v_1, v_2)$,因此 $dim range T S = 2$。综上所述,$S, T in LinearMap(FF^5)$,使得 $S T = 0$ 且 $dim range T S = 2$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof", label: "tricky")[
|
||||
设 $W$ 是有限维向量空间,$S, T in LinearMap(V, W)$。证明:$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$。
|
||||
][
|
||||
首先假设 $null S subset.eq null T$。令 $U = range S$,设 $w_1, dots, w_m$ 是 $U$ 的一组基。可以找到 $v_1, dots, v_m in V$,使得对于 $i in {1, dots, m}$, $S v_i = w_i$。
|
||||
|
||||
#let EU = $restricted(E, U)$
|
||||
#tab 根据线性映射引理(原书3.4),存在 $EU in LinearMap(U, W)$,使得对于任意 $i in {1, dots, m}$,有 $EU w_i = T v_i$。进一步,根据#exercise_ref(<E-extend-linear-map>),存在 $E in LinearMap(W)$,使得对于任意 $u in U$,有 $E u = EU u$。
|
||||
|
||||
#tab 设 $v in V$,将 $S v$ 表示为 $S v = a_1 w_1 + dots.c + a_m w_m$,其中 $a_1, dots, a_m in FF$。则
|
||||
|
||||
$ S v = u = sum_(k = 1)^m c_k w_k = sum_(k = 1)^m c_k S v_k = S (sum_(k = 1)^m c_k v_k) $
|
||||
|
||||
#let vd = $v_Delta$
|
||||
#tab 令 $vd = v - sum_(k = 1)^m c_k v_k$,则 $S vd = 0$,即 $vd in null S subset.eq null T$,故 $T vd = 0$,即
|
||||
|
||||
$ T v &= T (sum_(k = 1)^m c_k v_k) \
|
||||
&= sum_(k = 1)^m c_k T v_k \
|
||||
&= sum_(k = 1)^m c_k E w_k \
|
||||
&= E (sum_(k = 1)^m c_k w_k) \
|
||||
&= E S v $
|
||||
|
||||
#tab 这说明 $T = E S$。
|
||||
|
||||
#tab 另一方面,现在假设存在 $E in LinearMap(W)$,使得 $T = E S$。设 $v in null S$,即 $S v = 0$,则 $T v = E S v = E 0 = 0$,故 $v in null T$。这说明 $null S subset.eq null T$。
|
||||
|
||||
#tab 综上所述,$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user