Compare commits

..

2 Commits

Author SHA1 Message Date
c93b7043ee
3B 29
Signed-off-by: szdytom <szdytom@qq.com>
2025-08-13 23:16:48 +08:00
72cddc4bf8
3B 28
Signed-off-by: szdytom <szdytom@qq.com>
2025-08-13 22:57:25 +08:00
2 changed files with 30 additions and 6 deletions

View File

@ -258,7 +258,7 @@
#note[可以验证,上面结论等号成立,当且仅当存在 $i,j in {1, dots, m}$$i != j$),使得 $w = lambda v_i + mu v_j$,其中 $lambda, mu in FF$,满足 $lambda + mu = -1$]
#exercise_sol(type: "proof")[
#exercise_sol(type: "proof", ref: <E-Poly-space-basis>)[
$m$ 是正整数,$p_0, dots, p_m in Poly(FF)$,其中 $p_k$ 的次数为 $k$,证明: $p_0, dots, p_m$ $Poly_m (FF)$ 的基。
][
我们首先论证:对于任意自然数 $m$$p_0, dots, p_m$ 是线性无关的。我们关于 $m$ 使用数学归纳法。

View File

@ -1,5 +1,5 @@
#import "../styles.typ": exercise_sol, tab, exercise_ref, math_numbering
#import "../math.typ": null, range, LinearMap, span, restricted
#import "../styles.typ": exercise_sol, tab, exercise_ref, math_numbering, note
#import "../math.typ": null, range, LinearMap, span, restricted, Poly
#exercise_sol(type: "answer")[
给出一例:满足 $dim null T = 3$ $dim range T = 2$ 的线性映射 $T$
@ -497,9 +497,9 @@
#let vd = $v_Delta$
#tab $vd = v - sum_(k = 1)^m c_k v_k$,则 $S vd = 0$,即 $vd in null S subset.eq null T$,故 $T vd = 0$,即
$ T v &= T (sum_(k = 1)^m c_k v_k) \
&= E (sum_(k = 1)^m c_k w_k) \
&= E S v $
$ T v = T (sum_(k = 1)^m c_k v_k)
= E (sum_(k = 1)^m c_k w_k)
= E S v $
#tab 这说明 $T = E S$
@ -543,3 +543,27 @@
#tab $null P inter range P = {0}$。因此根据“两个子空间的直和”原书1.46),得 $V = null P plus.circle range P$
]
#exercise_sol(type: "proof", label: "tricky", ref: <E-Poly-lower-const-degree-surj>)[
$D in LinearMap(Poly(RR))$,满足对于任意非常数多项式 $p in Poly(RR)$,都有 $deg D p = (deg p) - 1$。证明:$D$ 是满射。
#note[上面的记号 $D$ 是用来让你想起微分映射#footnote[注意,微分映射是满足题设条件的映射,但并非满足题设条件的映射就一定是微分映射。],它将多项式 $p$ 映射到其导数 $p'$]
][
对于 $k in NN^+$,令 $p_k in Poly(RR)$ $z |-> z^k$,以及 $q_(k - 1) = D p_k$。于是 $deg p_k = k$,故 $deg q_k = deg q_(k + 1) - 1 = k$。设 $r in Poly(RR)$,使得 $deg r = m$,故 $r in Poly_m (RR)$
#tab 根据#exercise_ref(<E-Poly-space-basis>)$q_0, dots, q_m$ $Poly_m (RR)$ 的一组基。故存在 $a_0, dots, a_m in RR$,使得
$ r = sum_(k = 0)^m a_k q_k = sum_(k = 0)^m a_k D p(k + 1) = D (sum_(k = 0)^m a_k p_(k + 1)) $
#tab 这说明 $r$ 可以被 $sum_(k = 0)^m a_k p_(k + 1) in Poly(RR)$ 映射到,因此 $D$ 是满射。
]
#exercise_sol(type: "proof")[
$p in Poly(RR)$。证明:存在多项式 $q in Poly(RR)$,使得 $5 q'' + 3q' = p$
#note[这道题不一定要用线性代数,但是线性代数的解答更有趣。]
][
$Poly(RR)$ 上的映射 $T$ $p |-> 5p'' + 3p'$,容易验证 $T$ 为线性映射,且对于任意 $p in Poly(RR)$$deg T p = deg p - 1$。于是,根据@E-Poly-lower-const-degree-surj$T$ 是满射。
#tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$
]