mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
Compare commits
2 Commits
3257ae65f4
...
8924968c4d
Author | SHA1 | Date | |
---|---|---|---|
8924968c4d | |||
54250fc42c |
@ -394,7 +394,7 @@
|
||||
|
||||
#let Es = $cal(E)$
|
||||
|
||||
#exercise_sol(type: "proof", label: "hard")[
|
||||
#exercise_sol(type: "proof", label: "hard", ref: <E-two-sided-ideal>)[
|
||||
设 $V$ 是有限维向量空间。
|
||||
|
||||
- $LinearMap(V)$ 的子空间 $Es$ 被称为*双边理想(two-sided ideal)*,是指 $T E in Es$ 和 $E T in Es$,对于任意 $E in Es$ 和 $T in LinearMap(V)$ 都成立。
|
||||
@ -403,8 +403,8 @@
|
||||
][
|
||||
验证 ${0}$ 是 $LinearMap(V)$ 的双边理想是平凡的。现在假设 $Es$ 是 $LinearMap(V)$ 的双边理想,且 $Es != {0}$。故存在 $E in Es$ 使得 $E != 0$,即可设 $w_0 in V$,使得 $E w_0 != 0$。令 $w = E w_0$。
|
||||
|
||||
#let Rr = $restricted(R, span(w))$
|
||||
#tab 根据线性映射引理(原书3.4),可以找到线性映射#footnote[这里有时将 $FF$ 视为一个向量空间,即我们不对 $FF$ 和 $FF^1$ 进行明确地区分。] $Rr: span(w) -> FF$,满足 $Rr(w) = 1$。进一步地,根据@E-extend-linear-map,存在线性映射 $R in LinearMap(V, FF)$,使得对于任意 $u in span(w)$,都有 $R u = Rr(u)$。
|
||||
#let Rr = $restricted(R, W)$
|
||||
#tab 令 $W = span(w)$。根据线性映射引理(原书3.4),可以找到线性映射#footnote[这里有时将 $FF$ 视为一个向量空间,即我们不对 $FF$ 和 $FF^1$ 进行明确地区分。] $Rr: W -> FF$,满足 $Rr(w) = 1$。再根据@E-extend-linear-map,存在线性映射 $R in LinearMap(V, FF)$,使得 $R w = Rr(w) = 1$。
|
||||
|
||||
#tab 现在,对于任意 $u in W$ 和 $f in LinearMap(V, FF)$,定义
|
||||
|
||||
@ -421,15 +421,9 @@
|
||||
&= f(v) R(w) u \
|
||||
&= f(v) u $
|
||||
|
||||
#tab 现在,设 $T in LinearMap(V)$,$i, j in {1, dots, m}$。我们将 $T u_j$ 表示为
|
||||
#tab 现在,设 $T in LinearMap(V)$,$i, j in {1, dots, m}$。我们将 $T u_j$ 表示为 $T u_j = A_(1, j) u_1 + dots.c + A_(m, j) u_m$,其中 $A_(i, j) in FF$。同时,将 $v$ 表示为 $v = a_1 u_1 + dots.c + a_m u_m$,其中 $a_1, dots, a_m in FF$。
|
||||
|
||||
$ T u_j = A_(1, j) u_1 + dots.c + A_(m, j) u_m $
|
||||
|
||||
#tab 其中 $A_(i, j) in FF$。同时,对于任意 $v in V$,将其表示为
|
||||
|
||||
$ v = a_1 u_1 + dots.c + a_m u_m $
|
||||
|
||||
#tab 其中 $a_1, dots, a_m in FF$。现在,对于任意 $i in {1, dots, m}$,根据线性映射引理(原书3.4),我们可以找到线性映射 $f_i in LinearMap(V, FF)$,使得对于任意 $j in {1, dots, m}$,$f_i (v_j) = A_(i, j)$,即
|
||||
#tab 现在,对于任意 $i in {1, dots, m}$,根据线性映射引理(原书3.4),我们可以找到线性映射 $f_i in LinearMap(V, FF)$,使得对于任意 $j in {1, dots, m}$,$f_i (v_j) = A_(i, j)$,即
|
||||
|
||||
$ f_i (v) = sum_(j = 1)^m A_(i, j) a_j $
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#import "../styles.typ": exercise_sol, tab, exercise_ref, math_numbering, note
|
||||
#import "../math.typ": null, range, LinearMap, span, restricted, Poly
|
||||
#import "../math.typ": null, range, LinearMap, span, restricted, Poly, complexification, ii
|
||||
|
||||
#exercise_sol(type: "answer")[
|
||||
给出一例:满足 $dim null T = 3$ 且 $dim range T = 2$ 的线性映射 $T$。
|
||||
@ -565,7 +565,7 @@
|
||||
][
|
||||
令 $Poly(RR)$ 上的映射 $T$ 为 $p |-> 5p'' + 3p'$,容易验证 $T$ 为线性映射,且对于任意 $p in Poly(RR)$,$deg T p = deg p - 1$。于是,根据@E-Poly-lower-const-degree-surj,$T$ 是满射。
|
||||
|
||||
#tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$。
|
||||
#tab 这说明,对于任意 $p in Poly(RR)$,都存在 $q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
@ -615,3 +615,55 @@
|
||||
|
||||
#tab 综上所述,存在 $T in LinearMap(V, W)$ 使得 $null T = X$ 且 $range T = Y$,当且仅当,$dim X + dim Y = dim V$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $V$ 是有限维向量空间,$dim V > 1$。证明:若 $phi: LinearMap(V) -> FF$ 是线性映射,使得对于任意 $S, T in LinearMap(V)$,$phi(S T) = phi(S) phi(T)$,则 $phi = 0$。
|
||||
|
||||
#note(supplement: "提示")[#exercise_ref(<E-two-sided-ideal>)中给出了关于 $LinearMap(V)$ 的双边理想的描述,或许有用。]
|
||||
][
|
||||
设 $S in null T$,$T in LinearMap(V)$,则 $phi(S) = 0$,故 $phi (S T) = phi (T S) = phi(S)phi(T) = 0$,即 $S T, T S in null T$,故 $null T$ 是 $LinearMap(V)$ 的双边理想。根据#exercise_ref(<E-two-sided-ideal>),$null T = {0}$ 或 $null T = LinearMap(V)$。
|
||||
|
||||
#tab 由于 $dim V > 1$,容易验证 $dim LinearMap(V) > 1 = dim FF$,根据“映到更低维空间上的线性映射不是单射”(原书3.22),可知 $T$ 不是单射。再根据“单射性 $<==>$ 零空间为 ${0}$”(原书3.15),$null T != {0}$,因此 $null T = LinearMap(V)$。这说明对于任意 $S in LinearMap(V)$,都有 $S in null T$,即 $phi(S) = 0$。故 $phi = 0$。
|
||||
]
|
||||
|
||||
#let Tc = $complexification(T)$
|
||||
#let Vc = $complexification(V)$
|
||||
#let Wc = $complexification(W)$
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $V$ 和 $W$ 都是实向量空间,$T in LinearMap(V, W)$。定义 $Tc: Vc -> Wc$ 为对于任意 $u, v in V$,
|
||||
|
||||
$ Tc (u + ii v) = T u + ii T v $
|
||||
|
||||
+ 证明:$Tc$ 是 $Vc -> Wc$ 的(复)线性映射;
|
||||
+ 证明:$Tc$ 是单射,当且仅当 $T$ 是单射;
|
||||
+ 证明:$range Tc = Wc$,当且仅当 $range T = W$。
|
||||
|
||||
#note[复化 $Vc$ 定义于#exercise_ref(<E-vector-dspace-complexification>),线性映射 $Tc$ 被称为线性映射 $T$ 的*复化(complexification)*。]
|
||||
][
|
||||
对于(a),我们逐条验证线性映射的定义(原书3.1)中给出的要求:
|
||||
|
||||
/ 可加性: 对于任意 $u, v in Vc$,均有 $Tc (u + v) = Tc u + Tc v$。 \
|
||||
证明:设 $u = u_1 + ii u_2$,$v = v_1 + ii v_2$,其中 $u_1, u_2, v_1, v_2 in V$。则
|
||||
$ Tc (u + v) &= Tc ((u_1 + v_1) + ii (u_2 + v_2)) \
|
||||
&= T (u_1 + v_1) + ii T (u_2 + v_2) \
|
||||
&= T u_1 + ii T u_2 + T v_1 + ii T v_2 \
|
||||
&= Tc u + Tc v $
|
||||
|
||||
/ 齐次性: 对于任意 $lambda in CC$,$u in Vc$,均有 $Tc (lambda u) = lambda Tc u$。 \
|
||||
证明:设 $u = u_1 + ii u_2$,其中 $u_1, u_2 in V$。则
|
||||
$ Tc (lambda u) &= Tc (lambda (u_1 + ii u_2)) \
|
||||
&= T (lambda u_1) + ii T (lambda u_2) \
|
||||
&= lambda T u_1 + ii lambda T u_2 \
|
||||
&= lambda (T u_1 + ii T u_2) \
|
||||
&= lambda Tc u $
|
||||
|
||||
#tab 这说明 $Tc$ 确实是 $Vc -> Wc$ 的线性映射。
|
||||
|
||||
#tab 对于(b),首先假设 $Tc$ 是单射。根据“单射性 $<==>$ 零空间为 ${0}$”(原书3.15),可得 $null Tc = {0}$。设 $v in null T$,则根据“线性映射将 $0$ 映射为 $0$”(原书3.10),可得 $0 = T v = T v + ii T 0 = Tc (v + ii 0)$,因此 $v = 0$,即 $null T = {0}$,故 $T$ 是单射。
|
||||
|
||||
#tab 另一方面,假设 $T$ 是单射。设 $u + ii v in null Tc$,则 $0 = Tc (u + ii v) = T u + ii T v$,故 $T u = T v = 0$。又因为 $null T = {0}$,只能有 $u = v = 0$,即 $null Tc = {0}$,因此 $Tc$ 是单射。
|
||||
|
||||
#tab 对于(c),首先假设 $range Tc = Wc$。设 $w in W$,则存在 $u + ii v in Vc$,使得 $T (u + ii v) = w + ii 0$,即 $T u + ii T v = w + ii 0$,故 $T u = w$。于是 $W subset.eq range T$,即 $range T = W$。
|
||||
|
||||
#tab 另一方面,假设 $range T = W$。设 $w + ii v in Wc$,则存在 $u in V$,使得 $T u = w$。因此 $Tc (u + ii v) = T u + ii T v = w + ii T v$,即 $w + ii v in range Tc$。这说明 $Wc subset.eq range Tc$,即 $range Tc = Wc$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user