feat: remove unused files & code. rename demo

Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-08-03 20:20:48 +08:00
parent fcb71be9e8
commit 1354d9c08a
Signed by: szTom
GPG Key ID: 072D999D60C6473C
5 changed files with 9 additions and 307 deletions

View File

@ -1,122 +0,0 @@
# 矿物生成系统实现总结
## 概述
为tilemap库实现了三种新矿石Hematite赤铁矿、Titanomagnetite钛磁铁矿、Gibbsite三水铝石的生成系统。该系统基于Oil生成方式的改进版本专门针对山脉边缘的矿物分布进行了优化。
## 设计选择
### 为什么选择基于Oil的方案而不是胞元自动机
1. **精确控制性**Poisson disk采样方式能够精确控制矿物密度和分布间距
2. **效率优势**:单次随机游走比多轮胞元自动机迭代更高效
3. **参数直观性**:密度、集群大小、最小距离等参数更易于调整和平衡
4. **稀有资源特性**:矿物作为稀有资源,稀疏分布更符合游戏设计需求
## 核心特性
### 1. 位置限制
- 矿物只在 `BaseTileType::Mountain``SurfaceTileType::Empty` 的瓦片上生成
- 必须位于山脉边缘(至少有一个相邻瓦片不是山地)
- 确保矿物出现在山脉与其他地形的交界处,便于开采
### 2. 分层稀有度
```cpp
// 默认配置
hematite_density = 51; // ~0.2 per chunk (最常见)
titanomagnetite_density = 25; // ~0.1 per chunk (中等稀有)
gibbsite_density = 13; // ~0.05 per chunk (最稀有)
```
### 3. 集群生成
- 最小集群大小2个瓦片
- 最大集群大小5个瓦片
- 使用随机游走算法形成自然的小簇分布
- 40%概率跳过相邻瓦片,形成合适的密度
### 4. 距离控制
- 基于密度动态计算最小间距
- 确保矿物集群不会过于密集
- 最小间距至少8个瓦片
## 实现细节
### 核心算法
1. **Poisson disk采样**:生成候选位置,确保合适的分布
2. **山脉边缘检测**:验证位置是否在山脉边缘
3. **随机游走集群生长**:从中心点开始生成小簇
4. **冲突避免**:确保不同矿物集群之间保持距离
### 山脉边缘检测逻辑
```cpp
bool is_mountain_edge(const TileMap &tilemap, TilePos pos) const {
auto neighbors = tilemap.get_neighbors(pos);
for (const auto neighbor_pos : neighbors) {
const Tile &neighbor_tile = tilemap.get_tile(neighbor_pos);
if (neighbor_tile.base != BaseTileType::Mountain) {
return true; // 找到非山地邻居
}
}
return false; // 所有邻居都是山地,不是边缘
}
```
### 配置参数
```cpp
struct GenerationConfig {
// 矿物集群生成参数
std::uint8_t hematite_density = 51; // ~0.2 per chunk
std::uint8_t titanomagnetite_density = 25; // ~0.1 per chunk
std::uint8_t gibbsite_density = 13; // ~0.05 per chunk
std::uint8_t mineral_cluster_min_size = 2; // 最小集群大小
std::uint8_t mineral_cluster_max_size = 5; // 最大集群大小
std::uint8_t mineral_base_probe = 192; // 基础放置概率
};
```
## 生成流水线集成
矿物生成作为独立的pass添加到地形生成流水线的最后阶段
```cpp
void TerrainGenerator::operator()(TileMap &tilemap) {
biome_pass(tilemap);
base_tile_type_pass(tilemap);
smoothen_mountains_pass(tilemap);
smoothen_islands_pass(tilemap);
mountain_hole_fill_pass(tilemap);
deepwater_pass(tilemap);
oil_pass(tilemap);
mineral_cluster_pass(tilemap); // 新增的矿物生成pass
}
```
## 测试结果
通过mineral_demo测试程序验证
- 8x8 chunk地图 (262,144个瓦片)
- 山地瓦片35,916个 (13.7%)
- 山脉边缘瓦片15,881个 (44.2%的山地)
- 生成矿物分布:
- 赤铁矿47个瓦片
- 钛磁铁矿38个瓦片
- 三水铝石15个瓦片
- 山脉边缘矿物覆盖率0.63%
## 优势
1. **游戏平衡性**:稀有度分层,符合游戏经济设计
2. **真实感**:矿物出现在山脉边缘,符合地质常识
3. **可扩展性**:易于添加新的矿物类型和调整参数
4. **性能优秀**:单次生成,不需要多轮迭代
5. **确定性**:相同种子产生相同结果,支持多人游戏
## 使用建议
1. **密度调整**根据游戏需求调整各矿物的density参数
2. **集群大小**:可以为不同矿物设置不同的集群大小范围
3. **生成位置**:如需其他位置生成矿物,可修改`is_suitable_for_mineral`函数
4. **稀有度平衡**建议保持gibbsite < titanomagnetite < hematite的稀有度关系
这个实现提供了灵活、高效且平衡的矿物生成系统,完全满足了"控制生成数量,以小簇方式生成在山的边缘"的需求。

View File

@ -4,6 +4,6 @@ cmake_minimum_required(VERSION 3.27)
# Each example is built as a separate executable # Each example is built as a separate executable
# Biome system demonstration # Biome system demonstration
add_executable(biome_demo biome_demo.cpp) add_executable(tilemap_demo tilemap_demo.cpp)
target_link_libraries(biome_demo PRIVATE istd_tilemap) target_link_libraries(tilemap_demo PRIVATE istd_tilemap)
target_include_directories(biome_demo PRIVATE ../include) target_include_directories(tilemap_demo PRIVATE ../include)

View File

@ -1,167 +0,0 @@
#include "bmp.h"
#include "tilemap/generation.h"
#include "tilemap/tilemap.h"
#include <iostream>
using namespace istd;
int main() {
constexpr std::uint8_t map_size = 8; // 8x8 chunks
TileMap tilemap(map_size);
// Create generation config with adjusted mineral parameters
GenerationConfig config;
config.seed = Seed::from_string("mineral_demo_seed");
// Increase mineral density for demo
config.hematite_density = 102; // ~0.4 per chunk
config.titanomagnetite_density = 76; // ~0.3 per chunk
config.gibbsite_density = 51; // ~0.2 per chunk
// Smaller clusters for better visibility
config.mineral_cluster_min_size = 1;
config.mineral_cluster_max_size = 4;
// Generate the terrain
map_generate(tilemap, config);
// Create BMP to visualize the mineral distribution
constexpr std::uint32_t tile_size = 4; // Each tile is 4x4 pixels
std::uint32_t image_size = map_size * Chunk::size * tile_size;
BmpWriter bmp(image_size, image_size);
// Define colors for different tile types
auto get_tile_color = [](const Tile &tile)
-> std::tuple<std::uint8_t, std::uint8_t, std::uint8_t> {
// Override with mineral colors if present first
switch (tile.surface) {
case SurfaceTileType::Oil:
return {0, 0, 0}; // Black
case SurfaceTileType::Hematite:
return {255, 0, 0}; // Red
case SurfaceTileType::Titanomagnetite:
return {128, 0, 128}; // Purple
case SurfaceTileType::Gibbsite:
return {255, 255, 0}; // Yellow
case SurfaceTileType::Empty:
default:
break; // Fall through to base terrain colors
}
// Base terrain colors
switch (tile.base) {
case BaseTileType::Land:
return {0, 128, 0}; // Green
case BaseTileType::Mountain:
return {139, 69, 19}; // Brown
case BaseTileType::Sand:
return {238, 203, 173}; // Beige
case BaseTileType::Water:
return {0, 0, 255}; // Blue
case BaseTileType::Ice:
return {173, 216, 230}; // Light Blue
case BaseTileType::Deepwater:
return {0, 0, 139}; // Dark Blue
default:
return {128, 128, 128}; // Gray
}
};
// Fill the BMP with tile data
for (std::uint32_t y = 0; y < image_size; ++y) {
for (std::uint32_t x = 0; x < image_size; ++x) {
// Calculate which tile this pixel belongs to
std::uint32_t tile_x = x / tile_size;
std::uint32_t tile_y = y / tile_size;
TilePos pos = TilePos::from_global(tile_x, tile_y);
const Tile &tile = tilemap.get_tile(pos);
auto [r, g, b] = get_tile_color(tile);
bmp.set_pixel(x, y, r, g, b);
}
}
// Save the BMP
bmp.save("mineral_demo.bmp");
// Print statistics
std::uint32_t hematite_count = 0;
std::uint32_t titanomagnetite_count = 0;
std::uint32_t gibbsite_count = 0;
std::uint32_t mountain_edge_count = 0;
std::uint32_t total_mountain_count = 0;
std::uint32_t total_tiles = map_size * Chunk::size * map_size * Chunk::size;
for (std::uint32_t y = 0; y < map_size * Chunk::size; ++y) {
for (std::uint32_t x = 0; x < map_size * Chunk::size; ++x) {
TilePos pos = TilePos::from_global(x, y);
const Tile &tile = tilemap.get_tile(pos);
if (tile.base == BaseTileType::Mountain) {
total_mountain_count++;
// Check if it's a mountain edge
auto neighbors = tilemap.get_neighbors(pos);
bool is_edge = false;
for (const auto neighbor_pos : neighbors) {
const Tile &neighbor_tile = tilemap.get_tile(neighbor_pos);
if (neighbor_tile.base != BaseTileType::Mountain) {
is_edge = true;
break;
}
}
if (is_edge) {
mountain_edge_count++;
}
}
switch (tile.surface) {
case SurfaceTileType::Hematite:
hematite_count++;
break;
case SurfaceTileType::Titanomagnetite:
titanomagnetite_count++;
break;
case SurfaceTileType::Gibbsite:
gibbsite_count++;
break;
default:
break;
}
}
}
std::cout << "Mineral Generation Demo Results:\n";
std::cout << "================================\n";
std::cout << "Total tiles: " << total_tiles << "\n";
std::cout << "Mountain tiles: " << total_mountain_count << " ("
<< (100.0 * total_mountain_count / total_tiles) << "%)\n";
std::cout << "Mountain edge tiles: " << mountain_edge_count << " ("
<< (100.0 * mountain_edge_count / total_mountain_count)
<< "% of mountains)\n";
std::cout << "\nMineral Distribution:\n";
std::cout << "Hematite tiles: " << hematite_count << "\n";
std::cout << "Titanomagnetite tiles: " << titanomagnetite_count << "\n";
std::cout << "Gibbsite tiles: " << gibbsite_count << "\n";
std::cout << "Total mineral tiles: "
<< (hematite_count + titanomagnetite_count + gibbsite_count)
<< "\n";
if (mountain_edge_count > 0) {
double mineral_coverage = 100.0
* (hematite_count + titanomagnetite_count + gibbsite_count)
/ mountain_edge_count;
std::cout << "Mineral coverage on mountain edges: " << mineral_coverage
<< "%\n";
}
std::cout << "\nGenerated mineral_demo.bmp with visualization\n";
std::cout
<< "Colors: Red=Hematite, Purple=Titanomagnetite, Yellow=Gibbsite\n";
std::cout << " Brown=Mountain, Green=Land, Blue=Water, etc.\n";
return 0;
}

View File

@ -6,35 +6,26 @@
namespace istd { namespace istd {
enum class BaseTileType : std::uint8_t { enum class BaseTileType : std::uint8_t {
Mountain = 0x0,
Land, Land,
Mountain,
Sand, Sand,
Water, Water,
Ice, Ice,
Deepwater, Deepwater,
_count
}; };
enum class SurfaceTileType : std::uint8_t { enum class SurfaceTileType : std::uint8_t {
Empty, Empty = 0,
Oil, Oil,
Hematite, Hematite,
Titanomagnetite, Titanomagnetite,
Gibbsite, Gibbsite,
_count
// Player built structures
// (not used in generation, but can be placed by player)
Structure = 0xF,
}; };
constexpr std::uint8_t base_tile_count = static_cast<std::uint8_t>(
BaseTileType::_count
);
constexpr std::uint8_t surface_tile_count = static_cast<std::uint8_t>(
SurfaceTileType::_count
);
static_assert(base_tile_count <= 16, "Base tile don't fit in 4 bits");
static_assert(surface_tile_count <= 16, "Surface tile don't fit in 4 bits");
struct Tile { struct Tile {
BaseTileType base : 4; BaseTileType base : 4;
SurfaceTileType surface : 4; SurfaceTileType surface : 4;