mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
Fix typo, thanks ZRY
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
de6c54d0fa
commit
07ca699a59
@ -28,7 +28,7 @@
|
|||||||
|
|
||||||
$ (alpha beta) lambda &= ((a + b ii)(c + d ii))(e + f ii) \
|
$ (alpha beta) lambda &= ((a + b ii)(c + d ii))(e + f ii) \
|
||||||
&= (a c - b d + (a d + b c) ii)(e + f ii) \
|
&= (a c - b d + (a d + b c) ii)(e + f ii) \
|
||||||
&= (a c e - b d f - (a d + b c)f + (a d + b c)e) + ((a d + b c)e + (a c - b d)f) ii \
|
&= (a c e - b d e - (a d + b c)f) + ((a d + b c)e + (a c - b d)f) ii \
|
||||||
&= alpha (beta lambda) $
|
&= alpha (beta lambda) $
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -69,7 +69,7 @@
|
|||||||
根据定义,令 $alpha = a + b ii$(其中 $a,b in RR$),则取 $beta = (a / (a^2 + b^2)) - (b / (a^2 + b^2)) ii$,则有
|
根据定义,令 $alpha = a + b ii$(其中 $a,b in RR$),则取 $beta = (a / (a^2 + b^2)) - (b / (a^2 + b^2)) ii$,则有
|
||||||
|
|
||||||
$ alpha beta &= (a + b ii)(a/(a^2 + b^2) - b/(a^2 + b^2) ii) \
|
$ alpha beta &= (a + b ii)(a/(a^2 + b^2) - b/(a^2 + b^2) ii) \
|
||||||
&= (a^2 + b^2)(a^2 + b^2) \
|
&= (a^2 + b^2) / (a^2 + b^2) \
|
||||||
&= 1 $
|
&= 1 $
|
||||||
|
|
||||||
#tab 因此,这样的 $beta$ 存在。为了说明其唯一性,我们假设存在另一个 $beta'$,也满足 $alpha beta' = 1$,则有
|
#tab 因此,这样的 $beta$ 存在。为了说明其唯一性,我们假设存在另一个 $beta'$,也满足 $alpha beta' = 1$,则有
|
||||||
|
Loading…
x
Reference in New Issue
Block a user