mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
2A p9
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
52a7432797
commit
08c74f9b0b
@ -209,3 +209,32 @@
|
||||
|
||||
#tab 这说明 $a_1 = a_2 = a_3 = a_4 = 0$,因此向量组 $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$ 线性无关。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
证明或证伪:如果向量组 $v_1, dots, v_m$ 在 $V$ 中线性无关,那么向量组
|
||||
|
||||
$ 5v_1 - 4v_2, v_2, v_3, dots, v_m $
|
||||
|
||||
也线性无关。
|
||||
][
|
||||
设 $a_1, a_2, a_3, a_4 in FF$,使得
|
||||
|
||||
$ a_1 (5v_1 - 4v_2) + a_2 v_2 + dots.c + a_m v_m = 0 $
|
||||
|
||||
#tab 整理得到
|
||||
|
||||
$ 5a_1 v_1 + (a_2 - 4a_1) + a_3 v_3 + a_4 v_4 + dots.c + a_m v_m = 0 $
|
||||
|
||||
#tab 由于 $v_1, dots, v_m$ 线性无关,根据线性无关的定义(原书定义2.15),只能有
|
||||
|
||||
$ cases(
|
||||
5a_1 = 0,
|
||||
a_2 - 4a_1 = 0,
|
||||
a_3 = 0,
|
||||
a_4 = 0,
|
||||
dots.c,
|
||||
a_m = 0
|
||||
) $
|
||||
|
||||
#tab 这说明 $a_1 = dots.c = a_m = 0$,因此向量组 $5v_1 - 4v_2, v_2, v_3, dots, v_m$ 线性无关。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user