mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3C p4
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
faa17267a6
commit
ee001d70c4
@ -1,5 +1,5 @@
|
||||
#import "../styles.typ": exercise_sol, note, tab
|
||||
#import "../math.typ": LinearMap, range, Matrix, null, span
|
||||
#import "../math.typ": LinearMap, range, Matrix, null, span, Poly
|
||||
|
||||
#exercise_sol(type: "proof", label: "tricky")[
|
||||
设 $T in LinearMap(V, W)$。证明:对于 $V$ 和 $W$ 的任意基,$T$ 所对应的矩阵至少有 $dim range T$ 个非零元素。
|
||||
@ -61,3 +61,22 @@
|
||||
|
||||
#tab 故 $B_(k, j) = lambda A_(k, j)$,即 $B = lambda A$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "answer")[
|
||||
设 $D in LinearMap(Poly_3(RR), Poly_2(RR))$ 是微分映射,定义为 $p |-> p'$。求 $Poly_3(RR)$ 的一个基和 $Poly_2(RR)$ 的一个基,使得 $Matrix(D)$ 为
|
||||
|
||||
$ mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0) $
|
||||
|
||||
#note[和原书3.33比较一下。下一题拓展了本题。]
|
||||
][
|
||||
取 $Poly_3(RR)$ 的基为 $x^3, x^2, x, 1$,$Poly_2(RR)$ 的基为 $3 x^2, 2 x, 1$。则
|
||||
|
||||
$ D x^3 &= 3 x^2 &= 1 dot.c (3 x^2) + 0 dot.c (2 x) + 0 dot.c 1 \
|
||||
D x^2 &= 2 x &= 0 dot.c (3 x^2) + 1 dot.c (2 x) + 0 dot.c 1 \
|
||||
D x &= 1 &= 0 dot.c (3 x^2) + 0 dot.c (2 x) + 1 dot.c 1 \
|
||||
D 1 &= 1 &= 0 dot.c (3 x^2) + 0 dot.c (2 x) + 0 dot.c 1 $
|
||||
|
||||
#tab 故
|
||||
|
||||
$ Matrix(D) = mat(1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0) $
|
||||
]
|
||||
|
@ -99,6 +99,7 @@
|
||||
set footnote(numbering: "注1")
|
||||
show math.equation: set text(font: mathfont)
|
||||
set math.vec(delim: ("[", "]"))
|
||||
set math.mat(delim: ("[", "]"))
|
||||
|
||||
hide[#title <book-title>]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user