Compare commits

..

2 Commits

Author SHA1 Message Date
018639e412
3B 27
Signed-off-by: szdytom <szdytom@qq.com>
2025-08-12 00:59:01 +08:00
89a7188286
3B 26
Signed-off-by: szdytom <szdytom@qq.com>
2025-08-12 00:37:49 +08:00

View File

@ -507,3 +507,39 @@
#tab 综上所述,$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$
]
#exercise_sol(type: "proof")[
$V$ 是有限维向量空间,$S, T in LinearMap(V)$。证明:$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$
][
首先假设 $range S subset.eq range T$。设 $v_1, dots, v_m$ $V$ 的一组基。对于每个 $i in {1, dots, m}$,由于 $S v_i in range S subset.eq range T$,因此存在 $u_i in V$,使得 $T u_i = S v_i$
#tab 根据线性映射引理原书3.4),存在 $E in LinearMap(V, V)$,使得对于任意 $i in {1, dots, m}$,有 $E v_i = u_i$。设 $v in V$,将 $v$ 表示为 $v = a_1 v_1 + dots.c + a_m v_m$,其中 $a_1, dots, a_m in FF$。则
$ S v = S (sum_(k = 1)^m a_k v_k) = T (sum_(k = 1)^m a_k u_k) = T (sum_(k = 1)^m a_k E v_k) = T E v $
#tab 这说明 $S = T E$
#tab 另一方面,现在假设存在 $E in LinearMap(V)$,使得 $S = T E$。设 $w in range S$,则存在 $v in V$,使得 $S v = w$。因此
$ w = S v = T E v = T (E v) in range T $
#tab 这说明 $range S subset.eq range T$
#tab 综上所述,$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$
]
#exercise_sol(type: "proof")[
$P in LinearMap(V)$,且 $P^2 = P$。证明:$V = null P plus.circle range P$
][
$v in V$,则 $P v = P (P v)$,故 $P (v - P v) = 0$,即 $v - P v in null P$,另一方面,$P v in range P$,即
$ v = (v - P v) + P v $
#tab 其中 $v - P v in null N$ $P v in range P$,故 $V = null P + range P$
#tab 下面说明这个和是直和。设 $v in null P inter range P$,则 $P v = 0$ 且存在 $w in V$,使得 $v = P w$。故
$ 0 = P v = P^2 w = P w = v $
#tab $null P inter range P = {0}$。因此根据“两个子空间的直和”原书1.46),得 $V = null P plus.circle range P$
]