mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
1C p0
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
c1cf2835ef
commit
c4b1fdc7a7
@ -481,3 +481,30 @@
|
||||
|
||||
#tab 该反例说明,题目中的命题不成立。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "answer")[
|
||||
令
|
||||
|
||||
$ U = {(x, x, y, y) in FF^4 : x,y in FF} $
|
||||
|
||||
求 $FF^4$ 的一个子空间 $W$,使得 $FF^4 = U plus.circle W$。
|
||||
][
|
||||
取
|
||||
|
||||
$ W = {(x, 0, y, 0) in FF^4 : x,y in FF} $
|
||||
|
||||
#tab 我们首先证明 $FF^4 = U + W$。任取 $u = (a, b, c, d) in FF^4$,注意到 $u = v_1 + v_2$,其中,
|
||||
|
||||
$ v_1 &= (b, b, d, d) in U \
|
||||
v_2 &= (a - b, 0, c - d, 0) in W $
|
||||
|
||||
#tab 进一步地,我们说明这个和是直和。根据两个子空间的直和的条件(原书定理1.46),我们只需说明 $U inter W = {0}$。设 $v in U inter W$,那么存在 $a, b, c, d in FF$,使得
|
||||
|
||||
$ (a, a, b, b) = v = (c, 0, d, 0) $
|
||||
|
||||
#tab 这解得 $a = b = c = d = 0$,故 $U inter W = {0}$。
|
||||
|
||||
#tab 综上所述,$FF^4 = U plus.circle W$。
|
||||
]
|
||||
|
||||
#note[这并不是 $W$ 唯一的构造方案。]
|
||||
|
Loading…
x
Reference in New Issue
Block a user