mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
Compare commits
2 Commits
1160c3a30a
...
018639e412
Author | SHA1 | Date | |
---|---|---|---|
018639e412 | |||
89a7188286 |
@ -507,3 +507,39 @@
|
||||
|
||||
#tab 综上所述,$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $V$ 是有限维向量空间,$S, T in LinearMap(V)$。证明:$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$。
|
||||
][
|
||||
首先假设 $range S subset.eq range T$。设 $v_1, dots, v_m$ 是 $V$ 的一组基。对于每个 $i in {1, dots, m}$,由于 $S v_i in range S subset.eq range T$,因此存在 $u_i in V$,使得 $T u_i = S v_i$。
|
||||
|
||||
#tab 根据线性映射引理(原书3.4),存在 $E in LinearMap(V, V)$,使得对于任意 $i in {1, dots, m}$,有 $E v_i = u_i$。设 $v in V$,将 $v$ 表示为 $v = a_1 v_1 + dots.c + a_m v_m$,其中 $a_1, dots, a_m in FF$。则
|
||||
|
||||
$ S v = S (sum_(k = 1)^m a_k v_k) = T (sum_(k = 1)^m a_k u_k) = T (sum_(k = 1)^m a_k E v_k) = T E v $
|
||||
|
||||
#tab 这说明 $S = T E$。
|
||||
|
||||
#tab 另一方面,现在假设存在 $E in LinearMap(V)$,使得 $S = T E$。设 $w in range S$,则存在 $v in V$,使得 $S v = w$。因此
|
||||
|
||||
$ w = S v = T E v = T (E v) in range T $
|
||||
|
||||
#tab 这说明 $range S subset.eq range T$。
|
||||
|
||||
#tab 综上所述,$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $P in LinearMap(V)$,且 $P^2 = P$。证明:$V = null P plus.circle range P$。
|
||||
][
|
||||
设 $v in V$,则 $P v = P (P v)$,故 $P (v - P v) = 0$,即 $v - P v in null P$,另一方面,$P v in range P$,即
|
||||
|
||||
$ v = (v - P v) + P v $
|
||||
|
||||
#tab 其中 $v - P v in null N$ 且 $P v in range P$,故 $V = null P + range P$。
|
||||
|
||||
#tab 下面说明这个和是直和。设 $v in null P inter range P$,则 $P v = 0$ 且存在 $w in V$,使得 $v = P w$。故
|
||||
|
||||
$ 0 = P v = P^2 w = P w = v $
|
||||
|
||||
#tab 即 $null P inter range P = {0}$。因此,根据“两个子空间的直和”(原书1.46),得 $V = null P plus.circle range P$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user